
Modelling the hot electron spectrum in exothermic reactions on metals

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2008 J. Phys.: Condens. Matter 20 135002

(http://iopscience.iop.org/0953-8984/20/13/135002)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 29/05/2010 at 11:14

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/20/13
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 20 (2008) 135002 (7pp) doi:10.1088/0953-8984/20/13/135002

Modelling the hot electron spectrum in
exothermic reactions on metals
Massimo Tomellini

Dipartimento di Scienze e Tecnologie Chimiche Università di Roma Tor Vergata Via della
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Abstract
A phenomenological model is developed to describe the process of energy disposal, ruled by
electron–hole pair generation, in exoergic processes at metal surfaces. The evolution of the
energy distribution function of the metal electrons has been studied in the case of exoergic
adsorption of gas atoms. A simple expression is derived for the chemicurrent yield which
applies to both adsorption and recombination phenomena. The model is employed for
interpreting experimental data on hot carrier generation by H adsorption. A comparison
between the results of the present theory and those previously obtained by means of other
approaches is also reported and discussed.

1. Introduction

In exoergic reactions at solid surfaces the energy disposal
of the reacting species is an important process since it can
substantially affect the reaction mechanism. For instance,
in the case of atom recombination the transition from a
classical LH (Langmuir–Hinshelwood) to an HA (hot atom) [1]
mechanism has been shown to be driven by the ratio between
the probability for diatom formation and that for the dissipation
of the adatom energy into the solid [2, 3]. At metal surfaces
the chemical energy released by the reaction brings about
the generation of electron–hole (e–h) pairs, as experimentally
demonstrated through the measurements of the chemicurrent
yield [4–6]. These measurements give information on the
efficiency of the e–h excitation process. As a matter of fact,
chemicurrent yields show that the energy disposal via e–h pair
formation is quite efficient when H or O atoms interact with the
metal surface, in the case of molecules with strong adsorption
energies, (e.g. NO), and in the case of adspecies with small
adsorption energies as well (e.g. CO2) [5]. These experimental
results have been described in [5] by considering a mean value
of the energy transferred to the e–h pairs equal to 0.3Ea, with
Ea being the adsorption energy. In this context it is worth citing
the recent work on the relaxation of vibrationally excited NO
(ν = 15) on Au(111) via e–h pair generation where multiple
quanta of vibrational energy are transferred to a single e–h
pair [7].

Analytical and numerical simulations give the probability
distribution function for the energy disposal via e–h pair
formation and indicate that the width of this distribution and
the average value of the energy transfer per scattering event

can be quite large [8, 9], in accord with the chemicurrent
measurements. Theoretical models on chemicurrent yield
and on the time dependence of the non-equilibrium electron
distribution function have recently been presented [10–14].
In [10] the energy loss via e–h pair formation is described
through a position dependent friction coefficient, for an
adsorbate moving near the metal surface, that is computed by
means of an ab initio approach. This method is applied to
the H and D adsorption on Cu(111) and gives a theoretical
estimate of the chemically induced current that is in agreement
with the experimental results. In [11, 12] the process of
energy dissipation into e–h pairs has been simulated using time
dependent density functional theory for H atoms interacting
with an Al(111) surface. The hot electron spectrum was also
obtained and it is found to be characterized, approximately,
by an exponential decay. In [13] the hot electron spectrum
has been computed analytically by using the Newns–Anderson
model for a spin polarized adsorbate approaching the surface.
This method also allows us to investigate the validity of a
friction based approach as well as a useful check of simulations
based on ab initio time dependent density functional theory.
In [14] the energy distribution of metal electrons during H-
atom recombination has been computed under steady state
conditions and for a continuous distribution of vibrational
states of the adatoms.

In the case of energy disposal dominated by e–h pair
excitation, it has been shown how the spectrum of hot electrons
is governed by the energy distribution function of the adatoms
in the adsorption potential well. The coupling between these
two distributions has been further investigated through the
principle of detailed balance [14] which provides a relationship
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between the forward and the reverse rate constants for energy
transfer to the electron gas (reservoir). In this context it was
shown that the non-equilibrium state of the electron gas affects
the energy distribution of the adatoms the larger the excitation
energy of the e–h pair is.

The non-adiabatic excitation of e–h pairs and the detection
of chemicurrents have been analysed in detail in [15] by
means of a three-step model. The following independent steps
have been considered: (i) hot electron generation at the metal
surface; (ii) hot carrier transport across the metal film and (iii)
energy transmission through the Schottky barrier.

The purpose of the present contribution is mainly confined
to the first two processes that are described in the framework of
the Boltzmann transport equation where the e–h pair excitation
is taken into account by appropriate boundary conditions. As
far as step (iii) is concerned, the transmission coefficient across
the metal–semiconductor interface is assumed to be a unit step
function for energies higher than the Schottky barrier. Also,
in this contribution we extend the approach of [14] to the
adsorption phenomenon in order to study the time evolution
of the electron spectrum. Unlike the previous analysis [14]
the electron spectrum will be studied under non-steady state
conditions and in dependence on the distance from the surface.
The theoretical model allows one to estimate the chemicurrent
yield and leads to a formula that holds for both recombination
and adsorption processes.

2. Results and discussion

As outlined in the introduction, we deal with exoergic reactions
where the energy released is transferred to the solid leading
to e–h pair excitation. A schematic representation of the
energetics of the process is depicted in figures 1(a) and (b).
Adatoms enter the adsorption well from the upper bound
level and ‘move down’ the well owing to the exchange of
the energy quantum �E (figure 1(c)). Figures 1(a) and (b)
refer to the energetics of reactive and non-reactive adsorption,
respectively. By the term reactive adsorption we mean atom
adsorption followed by recombination and desorption of the
diatom A2 (figure 1(a)). Non-reactive adsorption, on the other
hand, refers to the adsorption of an adspecies (B in figure 1(b))
that does not recombine on the surface (e.g. CO).

Let us first consider reactive adsorption. The adsorption
energy as measured with respect to the gas species is given
by [ 1

2 DA2 + Ea] where DA2 is the diatom binding energy and
Ea is the adatom adsorption energy as measured with respect
to the A2 molecule at rest and vibrationless (figure 1(a)). In
the low coverage regime, the rate of diatom formation is small
and adsorption prevails. As the process proceeds the surface
coverage increases and a steady state regime is eventually
reached when the adsorption rate, J , equals the recombination
rate,� (figure 1(a)). At steady state the energy dissipation into
the metal occurs at the constant rate 1

2 DA2� and, consequently,
a non-equilibrium stationary state of the adlayer is generally
achieved [3]. In the non-reactive case, depicted in figure 1(b),
the steady state regime is obtained when the adsorption reaches
completion, that is when the adsorption rate, F , vanishes and
the equilibrium condition is obtained.

Figure 1. Schematic representation of the e–h pair excitation process
via adatom relaxation in the adsorption well. The adatom vibrational
ladders, in the cases of both atom recombination and adsorption, are
displayed in panels (a) and (b), respectively. DA2 is the binding
energy of the diatom, Ea the adsorption energy, J and F are the
fluxes of gas species entering the ladders and� is the recombination
rate. A pictorial view of the e–h pair excitation process at the metal
surface is also depicted in panel (c). �E is the energy transferred by
the adatom to the electron gas, ν∗ the upper bound level and εF the
Fermi energy. A representation of the non-equilibrium electron
distribution function is show in panel (d). A uniform distribution of
extra electrons (holes) is assumed to arise from each dissipation
channel with energy loss �Ei . The whole distribution is eventually
obtained by summing all these contributions.

Let us now shift to the process of energy transfer to the
metal electrons and to the modelling of their non-equilibrium
energy distribution function. The e–h pair excitation is thought
to occur in a surface layer whose thickness, δ, is negligible
when compared to the mean free path of the electrons, λ [6].
The electron distribution function, f , can be determined
through the Boltzmann equation together with the relaxation
time ansatz [16]. Since f depends on both time and spatial
coordinate along the internal normal to the surface plane, x ,
we get

∂ f̃ε
∂ t

+ vx
∂ f̃ε
∂x

= − f̃ε
τ
. (1)

In equation (1) f̃ε = fε− f (0)ε , with f (0)ε being the Fermi–
Dirac equilibrium distribution, vx is the electron velocity, ε the
electron energy and τ the relaxation time. This last quantity
includes both electron–electron (ee) and electron–phonon (ep)
relaxation channels, τ−1 = τ−1

ee + τ−1
ep , where τ ee < τ ep is

expected to hold. For the sake of simplicity, in the following
the relaxation time and the electron velocity are assumed to be
independent of energy. We consider, first, the case in which the
relaxation of the adspecies, within the adsorption well, occurs
through the exchange of energy quanta of magnitude �E . In
addition, since to a first approximation the electron and the
hole distributions are symmetric in energy [14], we confine our
analysis to the case ξ = ε − εF > 0, where εF is the Fermi
energy.
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The boundary condition of equation (1) is obtained by
exploiting the conservation of the electron flux in the layer
where the excitation takes place. Let us designate with ce(t)
the concentration of hot electrons in this surface layer. One
assumes that the velocity of these ‘nascent’ hot electrons is
distributed at random within the 4π solid angle, with the same
modulus of the velocity, v. In the following v = υF is assumed,
with υF being the Fermi velocity. Conservation of the number
of electrons requires that the generation rate of hot electrons
equals the rate at which they leave the surface layer. Denoting
by Fex(t) the energy power (per adspecies) used in the creation
of e–h pairs, with M being the surface density of adsorption
sites at the bare surface, and with �E the excitation energy of
the e–h pairs, the flux balance becomes

M Fex(t)

�E
=

∫
0
2

ce(t)υF cosϑ
d

0
+ ce(t)

δ

τ
, (2)

where cosϑ is the component of the velocity versor along the
internal normal to the surface, 0 = 4π and the integration
is performed over the 0

2 = 2π solid angle. The last term
in equation (2) accounts for the ee and ep scatterings leading
to the thermalization of hot carriers. From equation (2) one
eventually gets

M Fex(t)

�E
= ce(t)υF

(
1

4
+ δ

λ

)
∼= ce(t)υ, (3)

where υ = υF/4 and the approximation δ/λ � 1 was
employed. Furthermore, the energy distribution function of the
excited electrons in the surface layer (x = 0) can be linked to
equation (3) as follows:

ce(t) = ρ

∫ ∞

0
f̃ξ,�E (0, t) dξ = M Fex(t)

υ�E
(4)

where ξ = ε − εF and ρ is the electron density of states,
which is considered to be constant. Equation (4) assumes,
at any given time, a uniform distribution of hot electrons for
ξ � �E (figure 1(d)) and a quasi steady state condition. This
last requirement is expected to be fulfilled since the timescale
over which Fex(t) changes is much longer than the residence
time of the hot electrons in the layer. A representation of
the non-equilibrium electron distribution function is shown in
figure 1(d) for the general case of several relaxation routes with
energy loss �Ei . From equations (3) and (4) the boundary
condition is then obtained according to

f̃ξ,�E (0, t) = M Fex(t)

ρυ�E2
�(�E − ξ), (5)

where �(x) is the Heaviside function and Fex(t) is linked to
the adsorption kinetics. By performing the Laplace transform
of f̃ξ,�E (x, t) equation (1) becomes

∂ϕξ,�E(x, s)

∂x
= −α(s)

vx
ϕξ,�E(x, s), (6)

where α(s) = (s + τ−1) and the initial condition f̃ξ (x, 0) =
0 has been assumed. By setting vx

∼= υ the solution of
equation (6) is

ϕξ,�E(x, s) = ϕξ,�E(0, s)e−α(s)x/υ , (7)

with ϕξ,�E(0, s) being the Laplace transform of equation (5).

The Fex(t) function is computed by modelling the adsorption
kinetics in the framework of a ‘hit and stick’ process

σ̇ = 1

τa
e−t/τa , (8)

where σ̇ is the adsorption rate and τa the characteristic time
for adsorption. It is important to remember that the adatom
energy can be channelled into dissipation routes other than e–
h pair excitation. Collective excitations, such as phonons, can
take place during adsorption as well. This can be considered
in the computation of Fex(t) by introducing the probabilities
peh and pph with peh + pph = 1, which are, respectively those
for energy relaxation occurring via e–h or phonon excitation.
Then, Fex(t) = σ̇ peh Ea = peh Ea

τa
e−t/τa where Ea is the

adsorption energy and peh is taken as constant. It follows that

ϕξ,�E(0, s) = Mpeh Ea

ρυ�E2

1

τa

1

(s + τ−1
a )

�(�E − ξ), (9)

which eventually leads to the solution

f̃ξ,�E (x̄, t̄) = Mpeh Eaγ

ρλ�E2
e−x̄ e−(t̄−x̄)γ�(t̄ − x̄)�(�E − ξ),

(10)
where λ is the electron mean free path and the non-dimensional
quantities t̄ = t/τ , x̄ = x/υτ ∼= x/λ and γ = τ/τa have been
defined.

In order to deal with the excitation of e–h pairs of
different energy, equation (10) has to be summed over �E by
assigning a weight factor to each term of the sum (figure 1(d)).
This can be done by using the results of [8] and exploiting
the continuum limit. The probability that the adatom loses
an energy �E = h̄ω in a single reaction event (in a
round trip) has been computed in [8] by employing a strong-
coupling boson description in the case of perturbations that
vary slowly in time. In this model the nuclear motion of
the adatom is treated classically and the particle trajectory is
calculated under the assumption that no energy is lost. As
discussed in [8], this inconsistency should not be important
for the non-adiabatic effects that usually occur when the
particle velocity is much larger than its initial velocity. The
expression of the e–h pair excitation probability is formally
similar to that obtained for the forced oscillator model [8]:
P(ω) = 1

2π

∫ +∞
−∞ dteiωt P0 exp[∑i

|λi |2
(h̄ωi )2

e−iωi t ] where P0 =
exp[− ∑

i
|λi |2
(h̄ωi )

2 ], h̄ωi is the energy of the e–h pair and
λi ≡ λ(ωi ) is the Fourier transform of the time derivative
of the interaction potential. By means of this expression it
is possible to evaluate the probability distribution function for
the single e–h excitation, P1(ω). In fact, by Taylor expanding
the exponential term in the P(ω) expression one eventually
gets [17]

P1(ω) = P0

∑
i

|λi |2
(h̄ωi)2

δ(ω − ωi ). (11)

Once computed in the continuum limit and for a constant
density of states, D(ω) ≡ D, equation (11) gives

P1(ω) = 1

h̄2

∫ ωF

ωF−ω
P0ω

−2 |λ(ω)|2 D(ω′)D(ω′ + ω) dω′

= P0
D2

h̄2ω
|λ(ω)|2 , (12)

3
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Figure 2. Probability distribution functions for the single e–h pair
excitation. The distribution given by equation (13) has been shown as
solid lines for ε0 = 0.1 eV and η = 0.15 eV and as dashed lines for
ε0 = 0.1 eV and η = 0.2 eV. The probability curves, as obtained by
Taylor expanding the cosine function in equation (13), are also
shown as a solid line (η = 0.15 eV, curve a) and a dashed line
(η = 0.2 eV, curve b).

where ωF = εF/h̄. |λ(ω)|2 has been estimated in [8] in the case
of strong coupling when an adsorbate level crosses the Fermi
level during its motion toward the surface. The result reads:
|λ(ω)|2 ∝ [1 − cos(ω/ω0)]e−ω/ω1 where ω−1

0 and ω−1
1 are of

the order of magnitude of the round trip time and crossing time
of the adatom, respectively [8]. In the limiting case of single
pair excitation the normalized probability distribution function
then becomes

P1(w) = 2

ln
[
1 + (η/ε0)2

] e−w/η

w
[1 − cos(w/ε0)], (13)

where w is the energy loss, η = h̄ω1 and ε0 = h̄ω0. The first
moment of the distribution, i.e. the mean energy of the single
excitation, is given by 〈�E〉 = [1 + (ε0/η)

2]−1 2η
ln[1+(η/ε0)

2] .
In addition, the inequality η � ε0 is expected to hold. One
observes that by expanding the cosine function in equation (13)
up to the second-order term, the probability distribution
function reduces to P1(w) ∼= we−w/η

η2 , with η = 〈�E〉/2.
However, with the aim of describing the chemicurrent yield,
the condition w < η cannot be employed since the height of
the Schottky barrier is usually larger than the mean value of the
energy loss. Typical behaviours of the probability distribution
curve, together with its approximate expression derived above,
are shown in figure 2.

By integrating equation (10) over the probability
distribution function, equation (13), the electron spectrum is
eventually obtained as

f̃ξ (x̄, t̄) = M Eaγ peh

ρλ

�η/ε0

ε2
0

e−x̄ e−(t̄−x̄)γ ψξ/ε0�(t̄ − x̄), (14)

where �η/ε0 = 2
ln[1+(η/ε0)

2] and ψξ/ε0
∼= ∫ ∞

ξ/ε0

e−zε0/η(1−cos z)
z3 dz.

For Ea/η > 1, to a first approximation the upper integration
limit of this integral is taken as infinite.

(a)

(b)

Figure 3. Behaviour of the energy distribution function of the
surface electrons during chemisorption on metals. Computations are
for the time domain that is characteristic of the adsorption process
(equation (15b)). Panel (a) shows the function 1

2�η/ε0ψξ/ε0 computed
for ε0 = 0.1 eV and η = 0.15 eV (curve a), η = 0.2 eV (curve b) and
η = 0.3 eV(curve c). In panel (b) the dependence of the average
value of the energy loss, 〈�E〉, on η is displayed for ε0 = 0.08 eV
(curve a), ε0 = 0.1 eV (curve b) and ε0 = 0.14 eV (curve c).

By noting that τ is several orders of magnitudes smaller
than τa, two time domains can be singled out in equation (14):
(i) t ≈ τ � τa and (ii) t ≈ τa � τ . In these two cases
equation (14) becomes

f̃ξ (x̄, t̄) ∼= M Eaγ peh

ρλε2
0

�η/ε0 e−x̄ψξ/ε0�(t̄ − x̄) (case i) (15a)

f̃ξ (x̄, t) ∼= M Eaγ peh

ρλε2
0

�η/ε0 e−x̄ e−t/τaψξ/ε0

= M Eaγ peh

ρλε2
0

�η/ε0 (1 − σ(t)) e−x̄ψξ/ε0 , (case ii) (15b)

where in equation (15b), that is in the adsorption timescale,
the Heaviside function can be taken as equal to 1. It is worth
noting that for the free electron gas the term γ

ρλ
= (τaυρ)

−1

depends upon the surface electron density, n, since both ρ
and υ scale as n1/3. To be specific (υρ) ∼= 1

2(3π2)1/3h̄ n2/3,
where υ = υF/4 and ρ = n/εF were used. We confine
the present analysis to the time domain characteristic of the
adsorption kinetics. The behaviour of the normalized energy
distribution function of the electrons, 1

2�η/ε0ψξ/ε0 , is displayed
in figure 3(a) for several values of η and at ε0 = 0.1 eV. In fact,
this ε0 figure has been chosen in accord with the typical values
of the round trip time of the adatom as obtained by means of
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Figure 4. Three-dimensional plot of the hot electron spectrum as a
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values are: σ = 0, ε0 = 0.1 eV and η = 0.15 eV. The distribution
function has been normalized to the pre-factor 2M Eehγ
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(This figure is in colour only in the electronic version)

the ab initio method [10, 18]. In particular, for the H/Cu system
this elapsed time was estimated to be 0.04 ps, which implies
ε0

∼= 0.1 eV. For the typical values M = 105 cm−2, τa = 20 s,
Ea = 1 eV, n = 1022 cm−3 and ε0 = 0.1 eV the term M Ea

τaυρε
2
0

in

equation (15b) is about 4×10−14. In figure 3(b) the mean value
of the energy loss has also been shown, as a function of η, for
ε0 = 0.14 eV, ε0 = 0.1 eV and ε0 = 0.08 eV. Furthermore,
a 3D plot of the electron energy distribution function has been
reported in figure 4 as a function of x/λ and ξ/ε0 at σ � 1.
Since the approximation employed to estimate ψξ/ε0 is better
the larger the Ea/η ratio is, the results of figures 3 and 4
are to be considered more reliable the higher this ratio is.
The function ψξ/ε0 exhibits a divergence at ξ = 0 that is
removed once the integral of the chemicurrent yield is carried
out (equation (16)). Specifically, from the computation above
one evaluates the number of electrons (per adsorbed species)
made available for detection over a Schottky barrier of height
ξs, N(ξs):

N(ξs) = ρυ

M σ̇

∫ ∞

ξs

f̃ξ (0, t) dξ. (16)

Equations (8), (15b) and (16) give rise to

N(ξs) = Eeh�η/ε0

∫ ∞

ξs

dξ
∫ ∞

ξ

dx
e−x/η

x3
[1 − cos(x/ε0)]

= Eeh�η/ε0

∫ ∞

ξs

dx
(x − ξs)e−x/η

x3
[1 − cos(x/ε0)]

= Eeh�η/ε0

e−ξs/η

η

∫ ∞

0
dz

ze−z

[
z +

(
ξs

η

)]3

×
{

1 − cos

[
1

ε0
(zη + ξs)

]}
, (17)

where Eeh = peh Ea is the fraction of adsorption energy
transferred to the e–h pairs per adatom. For ξs � η the integral

in equation (17) can be solved analytically according to

N(ξs) ∼= Eeh�η/ε0

η2e−ξs/η

ξ 3
s

∫ ∞

0
dz e−z z

×
[

1 − cos

(
1

ε0
(zη + ξs)

)]

= Eeh�η/ε0

η2e−ξs/η

ξ 3
s

×
⎡
⎣1−

[
1−(

η

ε0

)2]
cos(ξs/ε0)− 2

(
η

ε0

)
sin(ξs/ε0)[

1+(
η

ε0

)2]2

⎤
⎦ . (18)

From equation (18) we find that the chemicurrent yield
is a decreasing function of the ratio ξs/η and, in addition, it
depends upon ε0. Furthermore, in the limiting case ω �
ω0 the single-excitation probability distribution function and
the hot carrier current are independent of ε0. As regards
the approximation employed in equation (18), one observes
that the approximate integral is about a factor of four larger
than the exact one. Nevertheless, owing to the small value
of the integral (for ξs/η values of interest in chemicurrent
experiments it is about 6 × 10−3) the analytical approximation
can be retained.

The spectrum of the excited electrons, and consequently
the chemicurrent, vanishes when the adsorption process
reaches completion (equation (15b)). On the other hand,
the chemicurrent yield (equations (16)–(18)) is independent
of surface coverage provided the adsorption is active. As
a matter of fact this equation can equally be applied to
diatom recombination provided that Ea is substituted with
�H = 1

2 DA2 , DA2 being the diatom binding energy of
the molecule (figure 1(a)). In the case of H adsorption
on a Cu surface, experimental measurements give N(ξs) ∼=
10−2 electrons/atom for Schottky barriers in the range 0.55 −
0.65 eV [4, 10]. Equation (18) is employed to evaluate the
chemicurrent yield at peh = 1, i.e. by assuming that all
exchanged energy is deposited into the e–h pairs. At this
point a comment is in order about this approximation. Energy
disposal via phonon excitation is expected to play a minor role
in the case of light adatoms, namely in the case of a small ratio
between the masses of adatom and metal atom. The classical
Baule expression for energy transfer shows that this quantity
scales as this mass ratio [6]. Quantum mechanically, the
adatom can be elastically scattered by the lattice without any
energy loss. The probability for this to occur depends on the
Debye–Waller factor whose value is larger the lower the mass
ratio above. In addition, in the absence of any match between
the phonon band and the vibrational state of the adatom, energy
disposal may occur by multiphonon excitation where, as a rule,
the process with the smallest number of emitted phonons is
favoured [19]. Usually the cross section for the excitation of n
phonons is a factor of 10–100 larger that that for the excitation
of n + 1 phonons [19]. Therefore, in the case of the H/Cu
system the e–h excitation should prevail. As a matter of fact,
this issue has been tackled in [18] where it has been found that,
for this system, the phonon production has a small influence on
the chemicurrent yield.

The hot electron yield, estimated through equation (18),
is reported in figure 5 as full lines. As anticipated above,

5
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Figure 5. Number of electrons available for detection over a
Schottky barrier of height ξs for the H/Cu system. The experimental
value is about N(ξs) ∼= 10−2 for barriers in the energy range
0.55–0.65 eV. The curves estimated through equation (18) are shown
as full lines for Eeh = 2.27 eV and η = 0.15 eV, ε0 = 0.1 eV
(curve a); η = 0.17 eV, ε0 = 0.1 eV (curve b); η = 0.2 eV,
ε0 = 0.08 eV (curve c). The dashed line is the chemicurrent yield
computed in [14] by assuming a continuous distribution of adatom
states. The full symbols are the results of the first-principles theory
of [10].

the value ε0
∼= 0.1 eV, used in this computation, is in

accord with that obtained in [18] through ab initio calculations.
Equation (18) yields N(ξs) figures that are in agreement with
the experimental outcome for η parameters in the range 0.15–
0.2 eV, namely for mean values of energy loss in the interval
0.17–0.2 eV. Notably, these values are in good agreement
with that obtained in [18]. The present results have also
been compared in figure 5 to those available in the literature
for the same system. Specifically, the dashed line is the
N(ξs) curve derived from master equations in the case of
a continuous distribution of adatom states in the potential
well. The parameters employed in the computation are [14]:
〈�E〉 = 0.15 eV, β = 136 eV−1,� = 0.02 s−1 and
Kehρa = 2.5×1015 eV s−1, ρa and� being the adatom density
of states and the steady state recombination rate, respectively.
Keh is the forward rate constant for the energy transfer between
the adatom and the solid and β = (kT )−1, where k is the
Boltzmann constant and T the surface temperature. The full
symbols in figure 5 are the chemicurrent yield obtained by
the first-principles theory of [10]. It is worth noticing that
the analytical result (equation (18)) is in accord with that of
the ab initio method in a wide range of Schottky barriers and,
more importantly, for similar values of the physical parameters.
In fact, curve b in figure 5 has been calculated for 〈�E〉 =
0.18 eV that agrees well with the value 〈�E〉 = 0.16 eV
estimated in [18].

In [15] the chemicurrent yield has been computed by
exploiting the analogies with spectroscopic processes leading
to the x-ray edge singularity. In that model the probability of
the single pair excitation is a function of the switching rate of
the perturbation and exhibits an exponential behaviour similar
to that obtained here in terms of η [20]. In fact, these two
quantities have the same order of magnitude, both being in the
range 0.1–0.5 eV.

The phenomenological model discussed so far can be used
to interpret the isotope effect on chemicurrents. Recently, this
issue has been considered in detail in [21] on the grounds
of experimental data on hot carrier generation in H and D
adsorption on a Ag/Si diode. The H/D-chemicurrent efficiency
ratio is found to be R1

∼= 4 and R2
∼= 7 for Schottky

barrier heights of 0.46 eV and 0.7 eV, respectively [21]. By
noting that the vibrational states in the anharmonic D-Ag
potential well are closer to each other than for the H-Ag
system by a factor of

√
2, one can assume that ηH

ηD
≈ √

2.
This is in accord with the physical meaning of η, as it stems
from Gunnarsson and Schönhammer’s approach, where η−1 is
shown to be proportional to the crossing time of the adsorbate
level, namely to the inverse of the atom velocity, υa. Since
υa

∼= (DA2/mA)
1/2 the crossing time is proportional to the

square root of the adatom mass. Consequently, ηH/ηD ≈
(mD/mH)

1/2 as reported above. A similar argument has been
employed in [15] in discussing the scaling of the ‘switching-
on rate’ of the perturbation with the depth of the adsorption
potential well. By assuming the ratio η/ε0 to be the same for
both species, the efficiency ratio given through equation (18)
reads

Ri ≈ η2
H

η2
D

exp

[
−ξs,i

(
1

ηH
− 1

ηD

)]
= 2 exp

[
ξs,i

ηH
(
√

2 − 1)

]
.

(19)
Equation (19) is consistent with both the experimental

values R1 and R2 above, for ηH
∼= 0.24 eV that is 〈�E〉 ∼=

0.21 eV (figure 3(b)).
Before concluding a comment is in order in connection

with both the estimate of the average over the P1 distribution
(equation (14)) and the results of [14]. As regards P1, it is
worth recalling that this distribution, that is linked to single e–
h excitations, is assumed to hold for each round trip of the atom
trapped in the potential well. Accordingly, the rate of e–h pair
generation, with energy in the range w − w + dw, is equal to
n(w)φP1(w) dw where φ is the adsorption rate and n(w) the
number of scattering events before thermalization. The present
computation therefore rests on the assumption n(w) ≈ Ea/w.
As far as the results of [14] are concerned, one observes that
this statistical model is restricted to the reactive adsorption
under steady state conditions. It deals with a mobile adlayer
and a continuous set of adatom states in the adsorption well
where, for each of them, an occupation number by adatoms
can be defined. The steady state populations are dictated by
recombination and energy disposal processes, namely the flux
of adatoms entering a given level, owing to the energy disposal,
equals the sum of the fluxes leaving the level because of both
recombination and energy dissipation phenomena. Although
based on some approximations, the theory developed in [14]
has the merit of highlighting the interplay between the electron
and the adatom energy distribution functions at steady state.
To be specific, by denoting with f̃a(E) the non-equilibrium
component of the energy distribution function of the adatoms,
one obtains [14]

f̃z = Q

[∫ X ∗

z
f̃a(X

′) dX ′
∫ X ′

z
�(ζ ) dζ−

∫ X ∗−z

0
f̃a(X

′) dX ′

×
∫ X ∗−X

z
e−ζ �(ζ ) dζ

]
, (20)
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where z = βξ , X = βE and X∗ = βE∗, E∗ being the
energy of the upper bound level in the adsorption well. In
equation (20) �(ζ ) is the state to state transition probability
for the energy transfer �E = ζ/β via e–h excitation. The Q
term in equation (20) depends on both β and z. Furthermore
it was demonstrated in [3] that, in the case of a discrete set of
vibrational levels, the energy distribution of the adatoms can
be approximated as fa(En) ∼= e−βEn + �/σK , where K is
the rate constant for energy disposal, σ the surface coverage
and � the recombination rate at steady state. Therefore, at
higher energies the distribution becomes uniform and equal
to fa(En) ∼= �/σK . This implies that the non-equilibrium
function f̃a(E), in equation (20), is different from zero for E >

E0 where βE0 = X0 = − ln(�/σK ) and is approximately
independent of temperature [3]. As a consequence the integral
in equation (20) depends on temperature through the z variable.
In equation (20) a temperature-dependent term also arises from
the detailed balance that is achieved by taking into account
the adatom excitation in the potential well caused by the
relaxation of the electron gas. Therefore, the chemicurrent
yield estimated by using equation (20) is expected to be
temperature dependent since the integration over the electron
spectrum has to be performed in the ξ variable [14]. On
the other hand, in the model presented here N(ξs) is nearly
independent of temperature. This is due to fact that the process
of adatom excitation by hot carriers has not been included in
equation (2).

In summary, the temporal and spatial dependence of
the spectrum of hot electrons in exothermic adsorption on
metal surfaces has been analysed by means of the Boltzmann
transport equation. This energy distribution function allows
one to compute the number of electrons made available
for detection over a Schottky barrier, i.e. to model the
chemicurrent yield. This current is found to depend on the
average value of the energy deposited in the e–h pair, on the
Schottky barrier and on adsorption energy. The results derived
from the theory compare favourably with the experimental
chemicurrents of the H/Cu system, as well as with results of
first-principles theory for a mean value of the energy loss that
is in accord with ab initio calculation.
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